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Based on a simple periodical external field model, we investigate the impact of standard
Leggett’s dissipation on the Berry’s phase, which is necessary for any practical imple-
mentation of geometric phase gate. It is found that the environmental noise, including
the thermal and vacuum parts, could lead to a decaying term in the matrix of Berry’s
phase, which corresponds to the decoherence process of a qubit as a function of both
time and temperature. A new type of two-level-system reservoir is also discussed, it is
shown that the decaying term only depends on time, but not on temperature. A concrete
case is exhibited by using the 1D Ohmic function.
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1. INTRODUCTION

Currently, there has been an explosive growth of interests in quantum com-
puters and universal quantum gates because of its novel ability in processing
information (Ekert and Jozsa, 1996; Aharonov, 1998; Steane, 1998; Bennett and
DiVincenzo, 2000). Many physical systems have been used to implement various
quantum gates, in which the NMR technique seems to be a powerful one in the
present laboratory (Jones, 2000). Most recently, Jones et al. (2000) and Ekert
et al. (2000) presented a novel scheme to realize the phase gate and then quantum
computing was purely performed by the geometric Berry’s phase. The dynamic
phase was diminished by using the spin-echo technique in NMR experiments and
the geometric phase was proved to be resilient for the errors in the amplitude of
the external RF field. By using a new designed sequence of simple operations
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with an additional vertical magnetic field, the conditional geometric phase shift
was also generalized to the non-adiabatic case (Wang and Matsumoto, 2001a,b).
However, an attractive problem about the effects of environmental noise on the
acquired geometric phase in the physical system has not been investigated and its
robust in the presence of dissipation still deserves some theoretical analysis for
any possible applications of their scheme to the practical quantum computing.

Historically, the investigations about the influence of dissipation on quantum
coherence were focused on the spin-boson model, which is largely due to the
pioneering work of Leggett et al. (1987; for an analysis of the drawback of this
standard model, see, e.g., Vacchini, 2000). Through a different formulation of en-
vironment, Shao et al. presented a new type of two-level-system reservoir which,
in the weak coupling, corresponds to the realistic physical situation of a spin inter-
acting with its surrounding (effectively) independent spin modes (Caldeira et al.,
1993; Shao et al., 1996; Shao and Hänggi, 1998; Mozyrsky and Privman, 2000).
The effect that temperature helps the system suppress decoherence was revealed
(Caldeira et al., 1993; Shao et al., 1996; Shao and Hänggi, 1998; Mozyrsky and
Privman, 2000), as they suspected, may favor the quantum computing efforts.

In this paper, by using the relatively simple versions of these two dissipa-
tion models respectively, we hope to gain some insights on the geometric phase
in the presence of dissipation. Our method is based on the concept of Berry’s
phase matrix. After showing the entanglement of a qubit with its environment
for static case within the standard Leggett’s model (1987) and Vacchini (2000),
we firstly study the impact of Leggett’s dissipation on the acquired geometric
phase of the spin trapped in a periodical magnetic field. It is shown that the
environmental noise, including the thermal and vacuum parts, leads to a decay-
ing term in the matrix of Berry’s phase, which corresponds to the decoherence
process of a qubit as a function of both time and of temperature. Then we inves-
tigate the similar problem by using the new type of two-level-system reservoir,
which leads to a decaying term exhibiting a different temperature-independent
behavior.

2. BERRY’S PHASE MATRIX

Before considering the possible dissipation effects in the concerned sys-
tem, we would like to introduce the simple generalization of Berry’s phase from
the evolution of wave function to the evolution of the reduced density matrix.
It is well known that, if the system studied is not coupled to other systems,
and if it starts from a mixed state, then the properties of the system is to-
tally described by the density matrix ρ(t) that complies with Liouville equation.
Suppose that the Hamiltonian is Ĥ (t) = Ĥ (R(t)), where R(t) is some periodic
parameter R(t + T ) = R(t) and Ĥ (R)|ψn(R)〉 = En(R)|ψn〉 is the so-called in-
stantaneously stationary Schrödinger equation. Without losing generality, we set
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ρ(0) = ∑N
m,n cmn|ψm(0)〉〈ψn(0)|. The density matrix at time t reads

ρ(t) =
N∑

m,n

cmn|φm(t)〉〈φn(t)|, (1)

where φm(t) = e−i
∫ t

0 dt ′Em(t ′) + eiζm(t)|ψm(R(t))〉 and ζm(t) being the ordinary
Berry’s phase. In principle, the Berry’s phase matrix γ (t) could be defined from

ρ(t) ≡ eiγ (t)ρad(t), (2)

where

ρad(t) =
N∑

m,n

cmne
−i

∫ t

0 dt ′[(Em(t ′)−En(t ′)]|ψm(t)〉〈ψn(t)|

is the density matrix in terms of adiabatic approximation. This way of definition is
in fact a natural extension of the ordinary Berry’s phase. For an isolated system, it
is clear that γ is an anti-symmetric matrix, and γmn(t) = ζm(t) − ζn(t). Obviously,
γ contains less information than the traditional Berry’s phases ζm(t) do. Besides,
it is also interesting to notice that either pure state or mixed state leads to the
same Berry’s phase matrix (see Sjöqvist et al., 2000, a recent work on defining the
geometric phase of mixed states in detail). Obviously, this method of investigating
the dissipation geometric phase differs from those of (Garrison and Wright, 1988;
Gamliel and Freed, 1989).

3. LEGGETT’S DISSIPATION MODEL

Let us consider a spin-1/2 particle in an external magnetic field B0 pointing
in the z-direction, as a physical realization of qubit. Two eigenstates of the spin
operator σz, separated by an energy gap ω0 = gB0 (g is the gyromagnetic ratio),
are labeled as the logic basis |0〉 (spin down) and |1〉 (spin up). It is well known
that the Bloch vector of this single qubit rotates along the z-axis with an angular
frequency ω0. We firstly consider the special case without the periodical field,
namely, a physical system only composed by a single qubit and its environment.
The Hamiltonian reads

H = 1

2
σzω0 +

∑

k

b
†
kbkωk +

∑

k

σz(gkb
†
k + g∗

k bk), (3)

which is equivalent to the famous model in connection with the tunneling problem
introduced by Leggett et al. (see also Unruh, 1995). In this case, one could
conveniently move into the interaction picture by applying the time evolution
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operator:

U (t) = exp

[

−i

∫ t

0

∑

k

σz(gkb
†
ke

iωkτ + g∗
k bke

−iωkτ )dτ

]

= exp

[

σz

∑

k

(b†kαk(t) − bkα
∗
k (t))

]

, (4)

with αk(t) = gk(1 − eiωkt )/ωk . Obviously U (t) has the form of conditional dis-
placement operator for the field, with the sign decided by the logical value of the
qubit. It could be easily seen that U (t) has the role to realize the entanglement of
qubit states and field states, for instance, an initial superposition state of the qubit
and a vacuum state for the field mode would be transformed into the following
entangled state

U (t) : (c0|0〉 + c1|1〉) ⊗ |0k〉
�→ c0|0〉| − αk(t)〉 + c1|1〉| + αk(t)〉, (5)

where |αk(t)〉 is a Glauber coherent state. It is clear that this entanglement could
lead to decoherence of the qubit state. The docoherence factor could easily be
derived by following the method shown in Fujikawa and Ono (1996) and Sun
et al. (1998), which we will not explore here.

Now we would like to consider a simple dissipation model with a time-
dependent magnetic field along the z-axis, which is just the non-static version of
the above Hamiltonian by replacing ω0 with ω(t) = µB(t). It will be seen that in
this simple model, the dissipation environment has an impact on the geometric
phase gained by the qubit because of the existence of the periodical field. The
generalization to the more realistic situation with an oscillating field in the xy-
plane (Jones et al., 1998) will be investigated elsewhere.

The state of our model is described by a density operator 
(t) which at time
t = 0 is of the form 
(0) = ρ(0) ⊗ ∏

k RkT , where RkT is the thermal density
matrix of the k-th mode of the field. Taking into account of the observation
[σz,H ] = 0, ρii(t) = ρii(0), (i = 0, 1), and using the unitary transformation (gk

being real number)

V = exp

[
∑

k

gk

ωk

(b†k − bk)

]

, (6)

we could make the Hamiltonian decoupled and the density matrix elements is
obtained as

ρij (t) = 〈i|T rRU (t)
(0)U−1(t)|j 〉. (7)
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The coherence ρ10 becomes

ρ10(t) = exp[−i�(t)]ρ10(0)
∏

k

T rkMkT , (8)

where �(t) = ∫ t

0 ω(τ )dτ ,

MkT = V −1(1) exp(−itωkb
†
kbk)V (1)RkT

×V −1(−1) exp(itωkb
†
kbk)V (−1), (9)

and V (±1) = exp[±1
∑

k (gk/ωk)(b†k − bk)]. Careful calculations show that

ρ10(t) = exp[−iω(t)t]ρ10(0) exp[−�̃(t, T )],

�̃(t, T ) =
∑

k

[
4(gk/ωk)2(1 − cos ωkt) coth

ωk

2T

]
, (10)

which, in the continuum limit, could be written as

�̃(t, T ) =
∫

dω
dk

dω
G(ω)4[g(ω)/ω]2

× (1 − cos ωt)(1 + 2〈n(ω)〉T ), (11)

where G(ω) is the density of modes at frequency ω (the index k is dropped),
〈n(ω)〉T is just the Bose–Einstein distribution for the thermal photons at tempera-
ture T , and (dk/dω) is the dispersion relation. By applying the 3D Ohmic spectral
density function (Leggett et al., 1987; Vacchini, 2000), we could find the final
result with a rather complex form, which we will not outline here since it is not
very important for the present purpose. The key point is, the Berry’s phase matrix
reads

(γ̃ (t, T ))10 = i�̃(t, T ), (12)

which represents a decaying term due to the environmental noise. Note that this
method is different from two early works which used the master equation under
the Born–Markov approximation (Gamliel and Freed, 1989) or the non-hermitian
Hamiltonian method (Garrison and Wright, 1988). Besides, we would like to
point out that our main results derived in the framework of deduced density matrix
keep valid for both 1D and 3D cases: they differ from each other only in the
concrete form of �̃(t, T ) which depends on the explicit forms of 1D and 3D
Ohmic functions.

As an example, here we consider the 1D Ohmic function G(ω) =
(ηωe−ω/ωc )/g2(ω), where ωc is some cut-off frequency. The final result about
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�̃(t, T ) is

�̃(t, T ) = η

2
ln

(
1 + ω2

c t
2
) + η

∞∑

k=1

ln

[

1 +
(

ωcT t

T + kωc

)2
]

,

which, in the low temperature limit (ωc � T ), reduces to

�̃(t, T ) = η

2
ln

(
1 + ω2

c t
2) + η ln

[
1

πT t
sinh(πT t)

]

(13)

which evolves from the square law �̃(t, T ) ∼ ω2
c t

2 in short time limits to the linear
law �̃(t, T ) ∼ T t in long time limits. Here one should note that the first term in
the above equation is independent of the temperature, which in fact represents the
part from the inevitable vacuum fluctuation.

4. GEOMETRIC PHASE IN TWO-LEVEL-SYSTEM RESERVOIR

Our concerned system is still a spin-1/2 particle trapped in periodical mag-
netic field B(t) along the z-axis. For weak couplings, every excitation of the heat
bath can be regarded as a quantum transition occurring in an individual two-level
(sub)system, which means that we can also resort to a thermal reservoir composed
of an infinite number of two-level systems as an equally universal environment in
physical realistic viewpoints to probe the dissipation effects in our simple model
system (Caldeira et al., 1993; Fujikawa and Ono, 1996; Shao et al., 1996; Shao
and Hänggi, 1998; Sun et al., 1998; Mozyrsky and Privman, 2000).

Since the original model in (Caldeira et al., 1993; Shao et al., 1996; Shao
and Hänggi, 1998; Mozyrsky and Privman, 2000) has rather complex quantum
behaviors and in particular, it is generally not exactly solvable, here, to give an
intuitive understanding of this new model, we still consider a relatively simple
Hamiltionian with a non-demolition coupling (Caldeira et al., 1993; Shao et al.,
1996; Shao and Hänggi, 1998; Fortunato et al., 1999; Mozyrsky and Privman,
2000), namely

H(t) = 1

2
σzω(t) +

∑

s

ωsσzs + σz

∑

s

gsσxs, (14)

where ω(t) = µB(t). The state of our model system is described by a density
operator 
(t) which at time t = 0 is of the form 
(0) = ρ(0) ⊗ ∏

s RsT , where
RsT is the thermal density matrix of s-th mode of the field. It is easy to observe
that [σz,H ] = 0 and ρii(t) = ρii(0), (i = 0, 1), which are in fact a main feature
of the non-demolition coupling model.

Taking into account of the well-known formula 
(t) =
exp(−iHt)
(0) exp(iHt) and the denoted expression of density matrix elements
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of the whole model system ρij (t) ≡ 〈i|T rR
(t)|j 〉, one could write the coherence
ρ10 as

ρ10(t) = exp[−i�(t)]ρ10(0)
∏

s

T rsMsT , (15)

where �(t) = ∫ t

0 ω(τ )dτ , MsT = V
†
s (1)RsT Vs(−1), and Vs(±1) =

exp[i(ωsσzs ± gsσxs)t]. Through a straightforward calculation, it is easy to obtain
a result analogous to that obtained within the standard Leggett’s model as

ρ10(t) = exp[−i�(t)]ρ10(0) exp(−�(t)),

�(t) =
∑

s

ln [1 − 2(gs/�s)
2 sin2(�st)]

−1, (16)

where �s = √
ω2

s + g2
s , and we have used the following identity

exp[i(λ1σz + λ2σx)] = cos λ + i
sin λ

λ
(λ1σz + λ2σx),

with λ =
√

λ2
1 + λ2

2. In the continuum limits, the decaying term also could be
rewritten as

�(t) =
∫

dω
ds

dω
G(ω) ln [1 − 2(gs/�s)

2 sin2(�st)]
−1, (17)

where G(ω) is the density of modes at frequency ω (the index s is dropped)
and (ds/dω) is the dispersion relation. Here, it is very interesting to observe that
the obtained decaying term �(t) is independent of temperature, which coincides
with the important conclusions derived for weak coupling in (Caldeira et al., 1993;
Shao et al., 1996; Shao and Hänggi, 1998; Mozyrsky and Privman, 2000), i.e., the
quantum coherence or the oscillatory decay of coherence sustains up to infinite
temperature (see also Fujikawa and Ono, 1996; Sun et al., 1998). It is evident that
this decaying term is quite different from that obtained by using the traditional
Leggett’s dissipation model, since the later depends both the evolution time and the
temperature. This difference can be traced back to the severe restriction restriction
of the thermal induced excitation possibilities of the reservoir degrees of freedom
(Caldeira et al., 1993; Shao et al., 1996; Shao and Hänggi, 1998; Mozyrsky and
Privman, 2000). In particular, the Berry’s phase matrix now reads

(γ (t))10 = i�(t), (18)
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which, as that in previous case, also represents a damping process due to
the environmental noise. For the purpose of comparison, we still consider the 1D
Ohmic function given above, thus the final result about �(t) in weak coupling
limits (gs → 0) could be written in a very simple form as

�(t) = η

2
ln(1 + 4ω2

c t
2), (19)

which, in the experimentally accessible domain of time (ωct � 1), reduces
to �(t) = η ln(2ωct). In comparison with previous result in low temperature limits
(ωc � T ), one could see that, the later would give a linear law with respect to both
evolution time and temperature �̃(t, T ) ∼ T t in long time limits; but in short time
limits, there is a square law only with respect to the evolution time �(t) ∼ ω2

c t
2

for both of two models. Evidently, at zero temperature, as pointed out in (Caldeira
et al., 1993; Shao et al., 1996; Shao and Hänggi, 1998; Mozyrsky and Privman,
2000), the dissipation dynamics of the two models is essentially identical.

5. CONCLUSION AND REMARKS

In conclusion, we have studied the impact of environmental dissipation on the
geometric phase acquired by a spin trapped in a periodical magnetic field, based
on two dissipation models respectively. In order to grasp the main physical feature
of this model system, we resort to an exactly solvable non-demolition coupling
and the results show that, for both of two models, the environmental noise will
lead to a decaying term in the matrix of Berry’s phase, which corresponds to a
decoherence process of the spin (qubit). However, the forms of the geometric
phase are quite different for two dissipation models, in particular, the geometric
phase is independent on the temperature for the new type of two-level-system
reservoir. This observation not only clearly shows its difference from that based
on traditional Leggett’s model, but also shed some new lights on the decoherence
problem particularly in geometric quantum computing efforts (Ekert et al., 2000;
Jones et al., 2000). For short time limits or at zero temperature, both of two
models exhibit essentially the same behaviors, as it should be. In the same way,
one could also study the coupling system of a register of L length with its reservoir
if the interaction between spins (qubits) could be ignored (Palma et al., 1996).
Of course, our investigation here is just the beginning point to understand the
effects of dissipation on Berry’s phase, in particular, our model did not consider
the more complex type of dissipation with the energy transfer between spin and
reservoir (Caldeira et al., 1993; Fujikawa and Ono, 1996; Shao et al., 1996; Shao
and Hänggi, 1998; Sun et al., 1998; Mozyrsky and Privman, 2000), which may
comprise the challenge for further works in the future.
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